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Abstract. We investigate limit behavior for the recursive application of a variety of constructions generalized from that of  
Napoleon’s Theorem.  Napoleon’s Theorem states that if we draw an isosceles triangle with 120 degree angle at its apex  
on each of the three sides of a triangle, then the triangle formed by joining those apexes is equilateral.  We generalize this  
construction by allowing any set of similar triangles.  In particular we show that if the similar triangles have 120 degree  
angles at  their  apex,  then recursive  application of  this  pseudo Napoleon’s  construction will,  in the limit,  construct  a  
triangle congruent to Napoleon’s.  We investigate this class of problems with a symbolic geometry system and a Computer  
Algebra System.

Introduction
In this paper, we attempt to illustrate the use of a symbolic geometry system in close combination with 
a computer algebra system.  We will illustrate this in an investigation of the limit properties of certain 
classes of recursive constructions.  

These  recursive  constructions  are  all  in  some  sense  or  another  generalizations  or  analogues  of 
Napoleon’s Theorem [Coxeter 1967; Hahn 1994].  Napoleon’s Theorem has been generalized in a 
variety  of  different  ways  [Gerber  1980;  Mauldon 1966;  Rigby 1988],  and recursive  sequences of 
Napoleon-like constructions studied in [Ziv 2002].  The latter sequences of constructions are similar, 
but not identical to those of section 4, below.

Geometry Expressions (www.geometryexpressions.com) can take a geometry diagram with symbolic 
constraints  (distances,  angles,  coordinates,  etc.)  and  generate  algebraic  expressions  for  output 
measurements.  This is a functionality which has not been directly available in an interactive sketch 
based tool, and it is the objective of this paper to illustrate how such a tool may be used.

In this paper, we will accept the formulas output from the symbolic geometry system as correct.  The 
reader with less faith in technology is welcome to prove these for himself.

1. A Penequilateral Triangle
Given  a  triangle  ABC (not  necessarily  right),  we  draw a  Pythagoras-like  diagram by subtending 
squares on each side.   We construct a second triangle DEF by joining the centers of the segments 
between neighboring corners of the squares (fig. 1).
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Figure 1: Construction for a penequilateral triangle
Although DEF can look to be equilateral at first glance, it is not.  Its side lengths are shown in figure 2.
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Figure 2: side lengths of a penequilateral triangle
Clearly the difference in squares of the side lengths of the new triangle is:
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Figure 3: recursive application of the construction
Applying the construction to DEF will result in a third triangle GHI, whose corresponding sides will 
have a difference of squares of:

16

22 ba −

If we keep recursing this construction, therefore the difference in squares of side length tends to zero.  

We denote S(i) to be the sum of squares of the side lengths of the triangle at step i in our recursion, and 
A(i) to be its area.  Let ABC be triangle 0, and DEF triangle 1.  Then:

222)0( cbaS ++=

4
)0( cbacbacbacbaA ++−+−−+++=   (Heron’s formula)

And from figure 2

)0(
4
7)0(12)1( SAS +=

Examining the expression for the area of DEF (figure 4), we see that A(1) can also be written as a 
linear combination of A(0) and S(0):
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Figure 4: area of the constructed triangle
Hence if
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The eigenvalues of M are:
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As the largest eigenvalue is greater than 1,  nM tends to infinity, and our triangle grows bigger and 
bigger.  However, the difference in squares of the sides tends to zero, hence the triangle itself tends 
towards equilateral.

2. An Asymptotically Equilateral Triangle
We next consider a second, similar recursive construction.  Given a triangle ABC, we draw equilateral 
triangles on each side (Napoleon’s diagram).  We create a new triangle DEF by joining the midpoints 
of the line segments between the apexes of these triangles (figure 5)
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Figure 5: Triangle DEF has vertices the midpoints of the segments joining the apexes of the 
equilateral triangles drawn on the sides of the generating triangle ABC  

Again we consider the effect of recursive application of this construction.

Examining expressions for the length of a side and the area of the triangle, we see that this construction 
again operates linearly on the sum of squares of the side lengths and the area of the triangle.
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Figure 6: Side length and area of DEF
In fact we have the following:
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The eigenvalues of M are:
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The eigenvectors corresponding to these eigenvalues are:
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Expressed in terms of the eigenvectors, the matrix M is :
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We show that for a triangle with side lengths a,b,c, 
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With equality only when a=b=c.

Proof: for an equilateral triangle of side length a
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Now in the general case we have:
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We examine

)(1921443 22222244422 accbbacbaAS −−−++=−

And show this is bigger than or equal to zero with equality only when a=b=c:

Hence:
2 2
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with equality only when a=b=c.

With this result, we have shown that the limit triangle of the recursive construction is equilateral.

To derive its side length, we express [A,S] in terms of the eigenvectors:
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Hence, the quantity AS 32
2

+ is conserved, and the side length d of the limit equilateral triangle can 

be derived from:
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which is the length of the side of the Napoleon’s triangle.

We have proved the following:

Theorem: Define a series of triangles  ,..,, 210 TTT such that  nT  is derived from  1−nT  by constructing 
equilateral triangles on the sides of 1−nT , and joining the bisectors of the segments joining the apexes of 
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these equilateral triangles. Then the limit of  nT  as n tends to infinity is congruent to the Napoleon 
triangle of the original triangle.  

Proof:  follows directly from the above.

Figure 7 is a picture of the first 3 iterations of the construction

T0 

T2 

T3 

T1 

T0 

T2 

T3 

T1 

C

AA

O

Z

I

K

J

A

Q

Y P

B

Figure 7: The first 3 iterations of the construction
Denote N(T) the napoleon triangle of triangle T. We have shown that each stage of the recursion 
creates  a  triangle  whose  Napoleon Triangle  is  congruent  to  the  Napoleon triangle  of  the  original 
triangle.  

..)()()( 210 ≅≅≅ TNTNTN

In fact we can show that the construction preserves not just the size of the Napoleon triangle, but also 
its location.

In figure 8, GH are the constructed points of the new triangle.  K is the center of the equilateral triangle 
on GH.  We see from the expression for the coordinates of K that it is also the center of the equilateral 
triangle BCD.
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Figure 8: the center of the equilateral triangle on GH is identical to the center of the triangle on BC
Hence we have:

..)()()( 210 === TNTNTN

Hence this construction preserves not only the size, but also the location of the Napoleon triangle.  

Hence ∞T is equilateral with

)()( 0TNTN =∞

But for equilateral T, 

N(N(T))=T
Hence :

))(( 0TNNT =∞
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Figure 9: The limit of the recursive construction is the Napoleon’s triangle of the Napoleon’s triangle  
of the generator.

3. A Recursive Pseudo Napoleon Construction
A generalization of Napoleon’s Theorem states that drawing any similar triangles on the edges of a 
generating triangle, in such a way that their orientation permutes, then joining any equivalent point on 
those triangles gives a similar triangle.  We investigate the construction where similar triangles are 
drawn in the same orientation, and where we join the apexes of those triangles.  We examine the 
recursive behavior of this construction.   Napoleon’s theorem is the special  case where the similar 
triangles have angles 30, 120, 30.

First we prove the following:

Lemma: The centroid of the constructed triangle is the centroid of the original triangle

Proof:  If we parametrize the triangle such that the altitude is t times the base length, and the foot of 
the altitude is proportion s along the base. Then if a triangle has points ( )00 , yx , ( )11 , yx , ( )22 , yx   The 
apex has coordinates:

( ))()1(),()1( 10101010 xxtsyysyytsxxs −++−−++−

Clearly, averaging the three symmetric points gives a centroid 




 ++++

333
,

333
210210 yyyxxx

, which is 

identical to that of the original triangle.

35



The Electronic Journal of Mathematics and Technology, Volume 1, Number 1, ISSN 1933-2823

We again investigate the recursive behavior of this construction by examining side lengths and areas:
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Figure 10: Area and side length for the general triangle apex construction
In the notation of the previous sections, we have: 
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The eigenvalues of M are:

ttssttss 33331,33331 2222 −++−+++−

The limit behavior of the construction can be described as follows:
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133331 22 >+++− ttss  constructed triangle grows to infinite size

133331 22 =+++− ttss  constructed triangle stays finite

133331 22 <+++− ttss  constructed triangle shrinks to zero

In any case, the eigenvectors are again:
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And hence the limiting triangle is equilateral.

To characterize the constructions from this family which stay finite, we solve
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The latter is the center of an equilateral triangle drawn on the segment (0,0), (1,0).  Hence the chord 
(0,0), (1,0) subtends an angle of 120 degrees with any point (with positive t) on this arc.

Hence the limit behavior of the construction depends on the angle at the apex of the similar triangles. 
If this angle is less than 120 degrees the constructed triangle grows infinitely.  If this is more than 120 
degrees,  the constructed triangle shrinks.  If this equals 120 degrees the constructed triangle stays 
finite, and using the argument of section 3 tends to a triangle congruent to the Napoleon’s triangle.

Looking at the smaller eigenvalue above, we find a value of t which makes this eigenvalue 0:






 −+= sit
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t is real only when 
2
1=s , in which case this is Napoleon’s construction.

Note that referred to an axis aligned with the eigenvectors, in the case of Napoleon’s construction:
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Fig 11 ABC is the initial triangle.  NOP is its Napoleon’s Triangle. QRS, TUV are the first two 
iterations of the construction

Although the size and shape of the triangle tends to a limit, its location does not in this case.  However, 
we can say the following:

Theorem: Define a series of triangles  ,..,, 210 TTT such that  nT  is derived from  1−nT  by constructing 
similar triangles on the sides of 1−nT , whose opposite angle is 120 degrees and joining the apexes of 
these  triangles.  Then  as  n  tends  to  infinity  nT  tends  to  be  an  equilateral  triangle  with  the  same 
circumcircle as the Napoleon’s Triangle of the original triangle..

Proof:    Referred to axes aligned with the eigenvectors, we see that applying Napoleon’s construction 
to nT  has a matrix of
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which is the same matrix as applying Napoleon’s construction to 0T .
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Hence )( nTN is congruent to that of )( 0TN . (By the lemma, )( nTN has the same circumcircle as )( 0TN
)

As nT  tends to equilateral, the limiting form is an equilateral triangle whose centroid is the same as 0T  
and whose Napoleon’s triangle is congruent to that of 0T .  But an equilateral triangle is congruent to its 
Napoleon’s triangle, hence the result.

5. Conclusions 
Numeric Dynamic Geometry Software can be used in the discovery of theorems where collinearity or 
congruence,  or  extremely  simple  algebraic  relations  hold  between  measured  quantities,  as,  for 
example, in [Grunbaum 2001].  A symbolic geometry package, such as Geometry Expressions allows a 
much richer discovery process where the form of algebraic expressions derived automatically from the 
geometry are the catalysts  for mathematical  development.   Specifically,  the sum of squares of the 
lengths of the sides of the triangles and their areas at each stage in the iteration were shown to be 
linearly related with those of the triangle at the previous stage in the iteration.  This let the mechanics 
of linear algebra be applied to the problem of acquiring a limiting form.

In this paper,  we have taken the more radical approach, not only of using the symbolic  geometry 
system as a means of discovering mathematics, but also of accepting its results without proof.  We 
have no excuse for this other than to maintain that these proofs while tedious are not difficult to do by 
hand.
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